Part Number Hot Search : 
2N2222 MAX6676 KAQW210H KAQW210H A8105 BC327G 20E301K 555C1H1
Product Description
Full Text Search
 

To Download V23990-P543-A28-PM Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  v23990-p543-*2*-pm flow pim 0 600v/10a clip-in housing trench fieldstop igbt's for low saturation losses optional w/o brc industrial drives embedded drives V23990-P543-A28-PM v23990-p543-a29-pm v23990-p543-c28-pm v23990-p543-c29-pm t j =25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v t h =80c 28 t c =80c 37 t h =80c 33 t c =80c 50 maximum junction temperature t j max 150 c inverter transistor t h =80c 16 t c =80c 20 t h =80c 39 t c =80c 60 t sc t j 150c 6 s v cc v ge =15v 360 v types v c 175 20 v ce v ge i cpulse t j max p tot i c w a 30 t j =t j max vce 1200v, tj top max t p limited by t j max a 600 a v t j =t j max turn off safe operating area power dissipation per igbt maximum junction temperature short circuit ratings gate-emitter peak voltage repetitive peak collector current collector-emitter break down voltage dc collector current a features flow pim 0 schematic dc forward current surge forward current t j =25c 200 t j =t j max target applications maximum ratings i fav a 2 s i fsm condition input rectifier diode a 200 i2t-value t j =t j max p tot w power dissipation per diode i 2 t t p =10ms 50 hz half sine wave 30 17mm housing 12mm housing copyright vincotech 1 revision: 4
v23990-p543-*2*-pm t j =25c, unless otherwise specified parameter symbol value unit maximum ratings condition inverter diode t h =80c 25 t c = 80c 25 t h = 80c 2 2 t c = 80c 32 brake transistor t h =80c 11 t c = 80c 14 t h = 80c 31 t c = 80c 47 t sc t j 150c 6 s v cc v ge =15v 36 0 v brake diode t h =80c 10 t c = 80c 10 t h = 80c 22 t c = 80c 34 thermal properties insulation properties v is t=2s dc voltage 4000 v min 12,7 mm min 12,7 mm cti >200 t j =t j max v c e 1200v, tj top max 175 a 600 v i frm p tot i f v rrm dc collector current t j max a v ma ximum junction temperature short circuit ratings t j max tu rn off safe operating area p tot power dissipation per igbt ga te-emitter peak voltage w t p limited by t j max t j =t j max 2 0 a 18 a 18 v v ce i cpuls i c collector-emitter break down voltage re petitive peak collector current repetitive peak forward current power dissipation per diode maximum junction temperature peak repetitive reverse voltage w 175 c dc forward current i f repetitive peak forward current v ge peak repetitive reverse voltage i frm v rrm v 6 0 0 c t j =t j max a m a ximum junction temperature t j max 1 7 5 t j =t j max t p limited by t j max d c forward current power dissipation per diode w a a t p limited by t j max 1 2 t j = t j max c c storage temperature t stg -40+125 c -40+(tjmax - 25) comparative tracking index insulation voltage creepage distance t op operation temperature under switching condition cl earance p tot t j =t j max 20 6 00 copyright vincotech 2 revision: 4
v23990-p543-*2*-pm parameter sy mbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 0,8 1,26 1,45 tj=125c 1,24 tj=25c 0,92 tj=125c 0,82 tj=25c 11 tj=125c 14 tj=25c tj=145c 1,1 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50m = 1 w/mk 2,1 0 k/w tj=25c 5 5,8 6,5 tj=150c tj=25c 1 1,59 2,2 tj=150c 1,78 tj=25c 0,08 tj=150c tj=25c 350 tj=150c tj=25c 15 tj=150c 14 tj=25c 11 tj=150c 14 tj=25c 155 tj=150c 170 tj=25c 89 tj=150c 98 tj=25c 0,16 tj=150c 0,22 tj=25c 0,24 tj=150c 0,29 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50m = 1 w/mk 2,4 1 k/w tj=25c 1 1,61 2,25 tj=150c 1,51 tj=25c 10 tj=150c 11 tj=25c 142 tj=150c 219 tj=25c 0,46 tj=150c 0,80 di(rec)max tj=25c 703 /dt tj=150c 397 tj=25c 0,09 tj=150c 0,17 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50m = 1 w/mk 3,33 k/w 62 551 tj=25c 17 40 none v 10 15 0 t r t d(off) v ce =v ge erec q gate c oss c rss q rr t rr i ges t f e on e off t d(on) i rrm v f v ge(th) v ce(sat) i ces r gint input capacitance output capacitance turn-off energy loss per pulse integrated gate resistor inverter transistor gate emitter threshold voltage value co n ditions characteristic values forward voltage th reshold voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t input rectifier diode v v m ma 30 30 3 0 reverse current i r c f=1mhz rgon=32 0 20 1 5 r goff=16 15 10 1 0 15 turn-on energy loss per pulse reverse recovered charge inverter diode peak reverse recovery current rev erse transfer capacitance diode forward voltage gate charge c ies reverse recovery time reverse recovered energy peak rate of fall of recovery current collector-emitter cut-off current incl. diode fall time turn-off delay time turn-on delay time rise time gate-emitter leakage current collector-emitter saturation voltage 600 25 0 480 10 10 0,00015 300 300 1500 rgon=32 mws v a nc na v m a mws ns p f n s a/s tj=25c copyright vincotech 3 revision: 4
v23990-p543-*2*-pm parameter sy mbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max va lue con ditions characteristic values tj=25c 5 5,8 6,5 tj=150c tj=25c 1 1,55 2,1 tj=150c 1,72 tj=25c 0,06 tj=150c tj=25c 350 tj=150c none tj=25c 11 tj=150c 10 tj=25c 8 tj=150c 10 tj=25c 118 tj=150c 130 tj=25c 93 tj=150c 117 tj=25c 0,07 tj=150c 0,10 tj=25c 0,15 tj=150c 0,18 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50m = 1 w/mk 3,0 7 k/w tj=25c 1 1,69 2,5 tj=150c 1,61 tj=25c 60 tj=150c tj=25c 7 tj=150c 8 tj=25c 97 tj=150c 151 tj=25c 0,23 tj=150c 0,23 di(rec)max tj=25c 522 /dt tj=150c 321 tj=25c 0,05 tj=150c 0,09 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50m = 1 w/mk 4,2 9 k/w a tj=25c vincotech ntc reference b-value tol. 3% k b (25/100) tj=25c 4000 k tj=25c b-value b (25/50) tol. 3% v v a ns a / s a mws c v 22000 5 -5 % t j =25c tj=25c 3,5 210 42 11 collector-emitter cut-off incl diode gate emitter threshold voltage 6 0,00043 gate-emitter leakage current i ces v ge(th) v ce(sat) collector-emitter saturation voltage gate charge input capacitance q gate reverse transfer capacitance e off turn-on energy loss per pulse r gint turn-off energy loss per pulse rise time turn-on delay time t f fall time t d(on) t r turn-off delay time t d(off) peak rate of fall of recovery current peak reverse recovery current reverse recovered charge c oss e on output capacitance c rss c ies integrated gate resistor nc brake transistor mw/k po w er dissipation p mw rated resistance r power dissipation constant deviation of r100 ? r/r r100=1486 i ges 0 15 rgon=32 rgoff=16 v ce =v ge f=1mhz 0 15 0 6 20 ma na ns pf mws rgon=32 v f i r 15 brake diode reverse recovery energy t rr q rr e rec reverse recovery time thermistor i rrm diode forward voltage reverse leakage current rgon=32 300 6 6 60 0 6 00 300 25 tj=25c tc=100c tc=100c tj=25c 28 368 copyright vincotech 4 revision: 4
v23990-p543-*2*-pm figure 1 output inverter igbt figure 2 output inverter igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at a t t p = 2 5 0 s t p = 25 0 s t j = 25 c t j = 12 5 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 out put inverter igbt figure 4 output inverter fwd typical transfer characteristics typi cal diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at a t t p = 2 5 0 s t p = 25 0 s v ce = 10 v output inverter typical output characteristics 0 10 20 30 0 1 2 3 4 v ce (v) i c (a) 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 0 0,5 1 1,5 2 2,5 3 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 10 20 30 0 1 2 3 4 v ce (v) i c (a) copyright vincotech 5 revision: 4
v23990-p543-*2*-pm figure 5 output inverter igbt figure 6 output inverter igbt typical switching energy losses typi cal switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) wi th an inductive load at with an inductive load at t j = 2 5 /125 c t j = 25 /125 c v ce = 30 0 v v ce = 30 0 v v ge = 15 v v ge = 15 v r gon = 32 i c = 10 a r goff = 16 fi gure 7 out put inverter fwd figure 8 output inverter fwd typical reverse recovery energy loss typi cal reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) wi th an inductive load at with an inductive load at t j = 2 5 /125 c t j = 25 /125 c v ce = 30 0 v v ce = 30 0 v v ge = 15 v v ge = 15 v r gon = 32 i c = 10 a output inverter e on high t e off high t e on low t e off low t 0,0 0 , 1 0,2 0,3 0,4 0,5 0,6 0 5 10 15 20 i c (a) e (mws) e off high t e on high t e on low t e off low t 0,0 0 ,2 0,4 0,6 0,8 0 50 100 150 200 250 300 r g ( w ) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0,00 0, 05 0,10 0,15 0,20 0,25 0,30 0 5 10 15 20 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0,00 0 ,05 0,10 0,15 0,20 0 50 100 150 200 250 300 r g ( w ) e (mws) 25 / 125 25 / 125 25 / 125 25 / 125 copyright vincotech 6 re v ision: 4
v23990-p543-*2*-pm figure 9 output inverter igbt figure 10 output inverter igbt typical switching times as a typi cal switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) wi th an inductive load at with an inductive load at t j = 1 2 5 c t j = 12 5 c v ce = 30 0 v v ce = 30 0 v v ge = 15 v v ge = 15 v r gon = 32 i c = 10 a r goff = 16 fi gure 11 out put inverter fwd figure 12 output inverter fwd typical reverse recovery time as a typi cal reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(i c ) t rr = f(r gon ) at a t t j = 2 5 /125 c t j = 25 /125 c v ce = 30 0 v v r = 30 0 v v ge = 15 v i f = 10 a r gon = 32 v g e = 15 v output inverter t doff t f t don t r 0,00 0, 01 0,10 1,00 0 5 10 15 20 i c (a) t ( m s) t j = t jmax -25c t rr t j = 25c t rr 0,0 0, 1 0,2 0,3 0,4 0,5 0 50 100 150 200 250 300 r g on ( w ww w ) t rr ( m s) t doff t f t don t r 0,00 0, 01 0,10 1,00 0 50 100 150 200 250 300 r g ( w ww w ) t ( m s) t j = t jmax -25c t rr t rr t j = 25c 0,0 0, 1 0,2 0,3 0,4 0 5 10 15 20 i c (a) t rr ( m s) 25 / 125 25 / 125 copyright vincotech 7 re v ision: 4
v23990-p543-*2*-pm figure 13 output inverter fwd figure 14 output inverter fwd typical reverse recovery charge as a typi cal reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at a t at t j = 2 5 /125 c t j = 25 /125 c v ce = 30 0 v v r = 30 0 v v ge = 15 v i f = 10 a r gon = 32 v g e = 15 v figure 15 out put inverter fwd figure 16 output inverter fwd typical reverse recovery current as a typi cal reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at a t t j = 2 5 /125 c t j = 25 /125 c v ce = 30 0 v v r = 30 0 v v ge = 15 v i f = 10 a r gon = 32 v g e = 15 v output inverter t j = t jmax - 25c i rrm t j = 25c i rrm 0 3 6 9 12 1 5 0 50 100 150 200 250 300 r gon ( w ww w ) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0,0 0 , 2 0,4 0,6 0,8 1,0 0 50 100 150 200 250 300 r g on ( w ) q rr ( m c) t j = t jmax -25c i rrm t j = 25c i rrm 0 2 4 6 8 10 1 2 0 5 10 15 20 i c (a) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0,0 0 , 2 0,4 0,6 0,8 1,0 1,2 0 5 10 15 20 i c (a) q rr ( m c) 25 / 125 25 / 125 25 / 125 25 / 125 copyright vincotech 8 re v ision: 4
v23990-p543-*2*-pm figure 17 output inverter fwd figure 18 output inverter fwd typical rate of fall of forward typi cal rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(i c ) di 0 / dt,di rec /dt = f(r gon ) at a t t j = 2 5 /125 c t j = 25 /125 c v ce = 30 0 v v r = 30 0 v v ge = 15 v i f = 10 a r gon = 32 v g e = 15 v figure 19 out put inverter igbt figure 20 output inverter fwd igbt transient thermal impedance fwd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at a t d = t p / t d = t p / t r thjh = 2, 41 k/w r thjh = 3, 33 k/w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) 0,06 5,2e+00 0,05 4,2e+00 0,07 8,2e+00 0,05 6,6e+00 0,26 5,0e-01 0,21 4,1e-01 0,31 5,2e-01 0,25 4,3e-01 0,97 1,0e-01 0,78 8,1e-02 1,25 9,3e-02 1,01 7,6e-02 0,52 1,9e-02 0,42 1,5e-02 0,78 2,0e-02 0,63 1,6e-02 0,35 3,4e-03 0,28 2,8e-03 0,54 3,2e-03 0,43 2,6e-03 0,26 3,5e-04 0,21 2,8e-04 0,40 4,1e-04 0,33 3,3e-04 thermal grease phase change interface thermal grease phase change interface output inverter t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z th-jh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di rec /dt 0 2 0 0 400 600 800 1000 1200 1400 0 50 100 150 200 250 300 r gon ( w ww w ) di rec / dt (a/ m s) di 0 /dt 0 200 400 600 800 1000 1200 0 5 10 15 20 i c (a) di rec / dt (a/ m m m m s) di rec /dt di 0 / dt 25 / 125 25 / 125 copyright vincotech 9 re v ision: 4
v23990-p543-*2*-pm figure 21 output inverter igbt figure 22 output inverter igbt power dissipation as a coll ector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at a t t j = 1 7 5 c t j = 17 5 c v ge = 15 v figure 23 out put inverter fwd figure 24 output inverter fwd power dissipation as a forw ard current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at a t t j = 1 7 5 c t j = 17 5 c output inverter 0 20 40 60 80 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 0 50 100 150 200 t h ( o c) i c (a) 0 10 20 30 40 50 60 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 10 revision: 4
v23990-p543-*2*-pm figure 25 output inverter igbt figure 26 output inverter igbt safe operating area as a function gat e voltage vs gate charge of collector-emitter voltage i c = f(v ce ) v ge = f(q ge ) at a t d = single pulse i c = 1 0 a t h = 80 oc v ge = 15 v t j = t jmax oc figur e 27 out put inverter igbt figure 28 output inverter igbt short circuit withstand time as a function of typical s hort circuit collector current as a function of gate-emitter voltage gate-emitter voltage t sc = f(v ge ) v ge = f(q ge ) at a t v ce = 6 0 0 v v ce 60 0 v t j 17 5 oc t j = 17 5 oc output inverter v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 10us 100us 1ms 10ms 100ms dc 10 0 10 3 0 2 4 6 8 10 12 14 16 18 0 20 40 60 80 100 q g (nc) v ge (v) 120v 480v 0 2 4 6 8 10 12 14 10 11 12 13 14 15 v ge (v) t sc (s) 0 25 50 75 100 125 150 175 12 14 16 18 20 v ge (v) i c(sc) copyright vincotech 11 revision: 4
v23990-p543-*2*-pm figure 29 igbt reverse bias safe operating area i c = f(v ce ) at t j = t jmax -25 o c u c cminus =u ccplus switching mode : 3 level switching 0 5 10 15 20 25 30 0 100 200 300 400 500 600 700 v ce (v) i c (a) i c max v ce max i c m odule i c chip copyright vincotech 12 revision: 4
v23990-p543-*2*-pm figure 1 brake igbt figure 2 brake igbt typical output characteristics typi cal output characteristics i c = f(v ce ) i c = f(v ce ) at a t t p = 2 5 0 s t p = 25 0 s t j = 25 c t j = 12 5 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 bra ke igbt figure 4 brake fwd typical transfer characteristics typi cal diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at a t t p = 2 5 0 s t p = 25 0 s v ce = 10 v brake 0 4 8 12 16 20 0 1 2 3 4 5 v ce (v) i c (a) 0 1 2 3 4 5 6 0 2 4 6 8 10 12 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 5 10 15 20 25 0 1 2 3 4 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 4 8 12 16 20 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 13 revision: 4
v23990-p543-*2*-pm figure 5 brake igbt figure 6 brake igbt typical switching energy losses typi cal switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) wi th an inductive load at with an inductive load at t j = 2 5 /125 c t j = 25 /125 c v ce = 30 0 v v ce = 30 0 v v ge = 15 v v ge = 15 v r gon = 32 i c = 6 a r g off = 16 fi gure 7 bra ke fwd figure 8 brake fwd typical reverse recovery energy loss typi cal reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) wi th an inductive load at with an inductive load at t j = 2 5 /125 c t j = 25 /125 c v ce = 30 0 v v ce = 30 0 v v ge = 15 v v ge = 15 v r gon = 32 i c = 6 a b rake t j = t jmax - 25c e rec t j = 25c e rec 0,00 0 ,03 0,06 0,09 0,12 0,15 0 2 4 6 8 10 12 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e r ec 0,00 0, 03 0,06 0,09 0,12 0,15 0 50 100 150 200 250 300 r g ( w ww w ) e (mws) e off t j = t jmax -25c e on e on t j = 25c e off 0,00 0 , 05 0,10 0,15 0,20 0,25 0,30 0 2 4 6 8 10 12 i c (a) e (mws) t j = t jmax -25c e off e o n e on t j = 25c e off 0,00 0 , 05 0,10 0,15 0,20 0,25 0,30 0 50 100 150 200 250 300 r g ( w ww w ) e (mws) 25 / 125 25 / 125 25 / 125 25 / 125 copyright vincotech 14 r e vision: 4
v23990-p543-*2*-pm figure 9 brake igbt figure 10 brake igbt typical switching times as a typi cal switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) wi th an inductive load at with an inductive load at t j = 1 2 5 c t j = 12 5 c v ce = 30 0 v v ce = 30 0 v v ge = 15 v v ge = 15 v r gon = 32 i c = 6 a r g off = 16 fi gure 11 bra ke igbt figure 12 brake fwd igbt transient thermal impedance fwd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at d = tp / t at d = tp / t r thjh = 3 , 07 k/w r thjh = 0, 60 k/w r thjh = 4, 29 k/w r thjh = 1, 27 k/w thermal grease phase change interface thermal grease phase change interface brake t doff t f t don t r 0,00 0, 01 0,10 1,00 0 2 4 6 8 10 12 i c (a) t ( m s) t doff t f t don t r 0,00 0, 01 0,10 1,00 0 50 100 150 200 250 300 r g ( w ww w ) t ( m s) t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 copyright vincotech 1 5 r evision: 4
v23990-p543-*2*-pm figure 13 brake igbt figure 14 brake igbt power dissipation as a coll ector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at a t t j = 1 7 5 oc t j = 17 5 oc v ge = 15 v figure 15 bra ke fwd figure 16 brake fwd power dissipation as a forw ard current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at a t t j = 1 7 5 oc t j = 17 5 oc brake 0 10 20 30 40 50 60 0 50 100 150 200 t h ( o c) p tot (w) 0 3 6 9 12 15 18 0 50 100 150 200 t h ( o c) i c (a) 0 10 20 30 40 50 0 50 100 150 200 th ( o c) p tot (w) 0 2 4 6 8 10 12 0 50 100 150 200 th ( o c) i f (a) copyright vincotech 16 revision: 4
v23990-p543-*2*-pm figure 1 rectifier diode figure 2 rectifier diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at a t t p = 2 5 0 s d = t p / t r thjh = 2, 1 k/w figure 3 rec tifier diode figure 4 rectifier diode power dissipation as a forw ard current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at a t t j = 1 5 0 oc t j = 15 0 oc input rectifier bridge 0 20 40 60 80 100 0,0 0,5 1,0 1,5 2,0 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 20 40 60 80 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 17 revision: 4
v23990-p543-*2*-pm figure 1 thermistor figure 2 thermistor typical ntc characteristic typi cal ntc resistance values as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 4 0 00 8000 12000 16000 20000 24000 25 50 75 100 125 t (c) r/  [ ] w = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - 25 100 /25 11 25 )( tt b ertr copyright vincotech 18 revision: 4
v23990-p543-*2*-pm t j 125 c r gon 32  r g off 16  figur e 1 out put inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of tdon, t eon (t eoff = integrating time for e off ) ( t eon = integrating time for e on ) v g e (0%) = 0 v v g e (0%) = 0 v v g e (100%) = 15 v v ge (100%) = 15 v v c (100%) = 30 0 v v c (100%) = 30 0 v i c (100%) = 10 a i c (100%) = 10 a t doff = 0, 26 s t don = 0, 02 s t eoff = 0, 52 s t eon = 0, 24 s figure 3 out put inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 30 0 v v c (100%) = 30 0 v i c (100%) = 10 a i c (100%) = 10 a t f = 0, 10 s t r = 0, 02 s switching definitions output inverter general conditions = = = i c 1% v ce 90% v ge 90% -50 -2 5 0 25 50 75 100 125 -0,1 0 0,1 0,2 0,3 0,4 0,5 0,6 time (us) % t doff t e off v ce i c v ge i c 10% v ge10% t don v ce 3% -50 0 50 1 00 150 200 2,6 2,7 2,8 2,9 3 3,1 3,2 time(us) % i c v ce t e on v ge fitted i c10% i c 90% i c 60% i c 40% -25 0 25 5 0 75 100 125 150 0,1 0,2 0,3 0,4 0,5 time (us) % v ce i c t f i c 10% i c 90% -40 0 40 8 0 120 160 200 2,6 2,7 2,8 2,9 3 3,1 time(us) % t r v ce i c copyright vincotech 1 9 r evision: 4
v23990-p543-*2*-pm figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p o ff (100%) = 2, 99 kw p on (100%) = 2, 99 kw e off (100%) = 0, 30 mj e on (100%) = 0, 31 mj t eoff = 0, 52 s t eon = 0, 24 s figure 7 out put inverter fwd figure 8 output inverter igbt gate voltage vs gate charge (measured) turn- off switching waveforms & definition of t rr v g eoff = 0 v v d (100%) = 30 0 v v geon = 15 v i d (100%) = 10 a v c (100%) = 30 0 v i rrm (100%) = 9 a i c (100%) = 10 a t rr = 0, 26 s q g = 70 ,94 nc switching definitions output inverter i c 1% v ge 90% -20 0 2 0 4 0 60 80 100 120 -0,2 0 0,2 0,4 0,6 time (us) % p off e o ff t eoff v ce 3% v ge 10% -40 0 40 8 0 120 160 200 2,6 2,7 2,8 2,9 3 3,1 time(us) % p on e on t eon -5 0 5 10 15 20 -20 0 20 40 60 80 qg (nc) v ge (v) i rrm 10% i rrm 90% i rrm 100% t rr -120 -8 0 -40 0 40 80 120 2,6 2,7 2,8 2,9 3 3,1 3,2 time(us) % i d v d fitted copyright vincotech 2 0 r evision: 4
v23990-p543-*2*-pm figure 9 output inverter fwd figure 10 output inverter fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) ( t erec = integrating time for e rec ) i d (100%) = 1 0 a p rec (100%) = 2, 99 kw q rr (100%) = 0, 82 c e rec (100%) = 0, 16 mj t qrr = 0, 56 s t erec = 0, 56 s switching definitions output inverter t qrr -100 - 5 0 0 50 100 150 2,6 2,8 3 3,2 3,4 3,6 % i d q rr time(us) -50 -25 0 25 50 75 100 125 2,6 2,8 3 3,2 3,4 3,6 time(us) % p rec e rec t erec copyright vincotech 2 1 r evision: 4
v23990-p543-*2*-pm in datamatrix as p543-a28 p543-a29 p543-c28 p543-c29 pin x y 1 25.5 2.7 2 25.5 0 3 22.8 0 4 20.1 0 5 16.2 0 6 13.5 0 7 10.8 0 8 8.1 0 9 5.4 0 10 2.7 0 11 0 0 12 0 19.8 13 0 22.5 14 7.5 19.8 15 7.5 22.5 16 15 19.8 17 15 22.5 18 22.8 22.5 19 25.5 22.5 20 33.5 22.5 21 33.5 15 22 33.5 7.5 23 33.5 0 pinout ordering code & marking ordering code and marking - outline - pinout version without thermal paste 12mm 2clips housing without thermal paste 17mm 2clips housing without thermal paste 12mm 2clips housing without thermal paste 17mm 2clips housing in packaging barcode as p543-a29 p543-c28 v23990-p543-c29-pm p543-c29 ordering code V23990-P543-A28-PM v23990-p543-a29-pm v23990-p543-c28-pm p543-a28 copyright vincotech 22 revision: 4
v23990-p543-*2*-pm disclaimer li fe support policy as used herein: the information given in this datasheet describes the type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright vincotech 23 revision: 4


▲Up To Search▲   

 
Price & Availability of V23990-P543-A28-PM

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X